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Monte Carlo Study of Localization on a
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We study the equilibrium properties of a single quantum particle interacting
with a classical lattice gas. We develop a path-integral formalism in which the
quantum particle is represented by a closed, variable-step random walk on the
lattice. After demonstrating that a Metropolis algorithm correctly predicts the
properties of a free particle, we extend it to investigate the behavior of the quan-
tum particle interacting with the lattice gas. Evidence of weak localization is
observed under conditions of quenched disorder, while self-trapping clearly
occurs for the fully annealed system. Compared with continuous space systems,
convergence of Monte Carlo simulations in this minimum model is orders of
magnitude faster in cpu time. Therefore the system behavior can be investigated
for a much larger domain of thermodynamic parameters (e.g., density and tem-
perature) in a reasonable time.

KEY WORDS: localization; self-trapping; path integral; quantum Monte
Carlo; electron; positron; lattice gas.

I. INTRODUCTION

The subject matter considered in our work focuses on systems in which a
single light particle interacts with more massive atoms and molecules. The
light particle obeys the laws of quantum mechanics while the massive
atoms can be treated classically. Examples of light particles are electrons,
positrons, or positronium. This scenario is important for understanding
electron transport in insulating materials, weakly ionized plasmas, and any
other situation which can be modelled by an excess (or solvated) electron
in a classical gas, liquid, or solid.(1) It also applies to lifetime studies of
positrons produced by radioactive sources which have been injected into
various materials.(2)
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Depending on the density or temperature, different qualitative behaviors
of the light quantum particle (hereafter qp) become manifest. At high tem-
perature and low density (i.e., in a dilute gas) the thermalized qp has a
short wavelength compared with the mean interatomic spacing and under-
goes a sequence of independent, random, scatterings from the constituent
atoms or molecules.(3) As the region of the liquid-vapor critical point is
approached, interesting and non-intuitive behavior occurs in low tem-
perature systems such as helium and neon.(4) Large, nonlinear, changes are
seen in the density dependence of the electron mobility(5, 6) and the positron
and positronium annihilation rate (4) which qualitatively suggest that the qp
has become self-trapped in a bubble or droplet of the fluid which it helps
to create, (7) depending on whether the net qp-atom interaction is repulsive
(bubble) or attractive (droplet). In the vicinity of the triple point, both
spectroscopic and lifetime measurements suggest that the qp is propagating
in the conduction band of the dense liquid.(8) Qualitative changes are also
found in the critical region of fluids with higher critical temperatures, but
the transition is less sharp.(3, 4) Heuristic theories which seem to be locally
applicable are available for each of these scenarios, (1, 2, 7�9) but a successful
analytic theory for the complete range of temperature and density is lack-
ing. It is encouraging that recent efforts are addressing this problem.(10)

An important consideration is the time scale, {, which is available for
the measurement process. Of course, in the case of the positron or
positronium, the lifetime provides a natural limit for this quantity with the
vacuum ortho-positronium lifetime of 140 ns providing the upper bound.(2)

However, there is also an effective lifetime for the excess electron resulting
from its eventual chemical bonding to an atom or molecule, and referred
to as the association time.(6) Thus, for experiments in which electron
currents or positron lifetimes are measured, an important question is
whether the classical host has sufficient time to respond to the presence of
the qp. In general there are three possibilities: (1) the qp is non-thermal,
(2) the qp thermalizes but the host does not respond (quenched host),
or (3) the system completely equilibrates (annealed host). Complete self-
trapping, in which the host has time to redistribute itself into a local bubble
or droplet, apparently occurs in He in the critical region and requires
case three. However, disorder induced (Anderson) localization(11) is still
possible in case two. Although the question of thermalization has been
raised in the case of positron decay in xenon, (12) at present a systematic
investigation of thermalization times is lacking. In fact, it is possible that
there is a threshold temperature above which localized or self-trapped
states don't occur with significant probability.

Theoretical models, such as mean field theory, in which the classical
atoms respond to the potential induced by a single, optimal, quantum state

348 Guo and Miller



have been used to describe self-trapped states. They seem to work well near
the critical point of He, (7) but not for gases with critical points at higher
temperatures, such as Ar and Xe, (13) where the observed nonlinear density
dependence of the Ps and o-Ps decay rate varies much more gradually than
the theory predicts. In contrast, independent particle models based on a
spherical Wigner Seitz cell, which place the qp at the bottom of the con-
duction band, seem to be applicable in liquids near the triple point.(1, 6, 8, 9)

However, there is no single model which succeeds everywhere, and all
theories are either semi-empirical or require an uncontrolled approximation.

The Feynman�Kac path integral(14) provides the only theoretical
method for exploring a model Hamiltonian directly. In this formalism,
a single quantum particle is replaced by a closed harmonic chain of say p
pseudo-particles with a temperature dependent force constant, each inter-
acting with the host system through a p-reduced potential. The predictions
are exact in the limit p � �. The path integral has been used to predict the
decay rate of the positron(15) and ortho-positronium (16) in xenon and to
study quantum states of electrons(17) in dense gases. These computations
have proven useful for elucidating behavior which could not be explained
by mean field theory. For example, it was demonstrated that density fluc-
tuations in the decay rate are of the same order as the mean in a region
surrounding the liquid-vapor critical point.(18) Relying on ``smart'' Monte
Carlo algorithms, the main difficulty encountered with PIMC (path integral
Monte Carlo) is that the convergence is extremely slow. This results in a
lack of confidence in some earlier results (for an excess electron) and strong
limitations on the range of parameters which can be explored systemati-
cally, so that it is difficult to build up a good qualitative picture.

Chandler et al. have combined the path integral formalism with non-
perturbative fluid structure approximations to develop an analytic theory
for the equilibrium properties of an annealed qp-fluid system.(19) Using well
known closures, Chen and Miller found that, in comparison with PIMC
predictions, the theory seriously underestimates the deviations from free
particle behavior below the critical density.(20�22) Whether other closures
are more promising remains to be seen.

Then purpose of this work is to introduce a simple Hamiltonian which
can be used to make numerically accurate predictions over a wide
parameter range. We sacrifice some features of the real system in order to
be able to explore essential features of the quantum particle behavior with
confidence. Our system consists of a quantum particle on a one dimen-
sional lattice interacting with massive atoms. The space is discrete, and
both the qp and the atoms live on the lattice sites. The atoms may have a
periodic distribution or may be distributed randomly. For the qp we chose
a Hamiltonian which is the discrete space analogue of the usual continuous
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version. In form it is similar to the tight binding Hamiltonian.(23) First we
study the free particle case in which the atoms are absent. The equilibrium
properties can be determined analytically by standard methods. We then
develop a path integral approach for modeling the system and compare its
predictions for the free particle mean energy, potential energy, and correla-
tion function with the exact analytic expressions. This agrees perfectly with
the analytical results. We then use the method to study the physical proper-
ties in the presence of atoms; first, with atoms periodically distributed on
the lattice, then with quenched disorder and, finally, fully annealed. It is
important to test the path integral approach for each of these cases, as the
former must result in propagating qp states while the latter is subject to
Anderson localization. As expected, we find that free particle behavior
prevails in the high temperature limit. At finite temperature the quenched
disordered system shows a gradual trend toward increasing (Anderson)
localization with decreasing temperature while direct evidence of qp
propagation is observed for the exactly periodic atom distribution. We find
that the fully annealed system exhibits strong localization (i.e., self-trap-
ping) as the,temperature is reduced. Finally, to get some idea of the
parameter range where mean field theories can be expected to work, we
compare the numerically accurate PIMC predictions with those of mean
field theory.

II. DESCRIPTION OF THE MODEL

We study a one dimensional system of a light quantum particle (think
of an electron, positron, etc.) interacting with more massive atoms. We
suppose that the temperature is sufficiently high that the atoms can be
treated classically. The lattice sites are occupied by atoms but some lattice
sites are left empty. The space for the quantum particle is also discrete: i.e.,
the qp also lies only on the lattice sites. The qp should obey Schrodinger's
equation

H� |9 ) =E |9 ) (1)

where H� is the Hamiltonian operator, E is the energy eigenvalue, and |9 )
the state vector of the qp.

For ease of calculations it is convenient to employ second quantiza-
tion. Let | j) denote the state in which the quantum particle is on lattice
site j. Then the set [ | j) : j=..., &L,..., &2, &1, 0, 1, 2,..., L,...] forms a
basis for our state space. In addition, let | ) denote the vacuum state. We
define linear annihilation operators cj and creation operators c+

j on the
basis vectors as follows:
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cj | )=0 (2)

cj |k)=$j, k | ) (3)

c+
j | )=| j) (4)

c+
j |k)=0 (5)

We also assert the periodic boundary condition

�L+1=�1 (6)

When the space is changed from continuous to discrete, the differential
operators in the Hamiltonian should be changed to difference operators
accordingly. The corresponding Hamiltonian is

H� =2t&t :
j

(c+
j cj+1+c+

j+1 cj )+:
j

v jc+
j cj (7)

where vj is the potential energy of the qp on lattice site j. In our model we
simply take

vj==nj (8)

where nj is the number of atoms on lattice site j, (nj=0, 1) and with the
choice

t=
�2

2ma2 (10)

in which m is the mass of the qp and a is the lattice spacing, we get the
discrete approximation of the continuous Hamiltonian. This happens to be
the Hamiltonian known from the tight binding model.(22) Without loss of
generality we choose units such that t=1 in all of the following.

III. FREE PARTICLE ON THE LATTICE

When there is an interaction between the light particle and the atoms,
generally the problem cannot be solved analytically. We are going to
employ a Monte Carlo calculation by way of a discrete version of the
Feynman�Kac path integrals(13) to study the system. In the free particle
case there are no atoms at all, vj=0 for any j, and we can get the exact
analytical solution of the Schrodinger equation. We also carry out Monte
Carlo calculations for the free particle case so that we can compare them
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with the exact analytical solutions. For the interacting case we can only
rely on our Monte Carlo calculations.

1. Analytical Solution

1.1. Energy Spectrum and Eigenstates. For the free particle
case, it is easy to see we have the following solution for the eigenstates of
the Schrodinger equation

�(:)
j =

1

- L
exp \2?i:j

L + , :=1, 2,..., L (11)

where L is the lattice size. Substitute this solution into Eq. (1), notice vj=0,
and we have the energy eigenvalues:

E (:)=2t&2t cos
2?:
L

, :=1, 2,..., L (12)

This is the energy spectrum. If L � �, we get a single continuous energy
band with two fold degeneracy because for each energy E (:) there are two
different states 9 (:) and 9 (L&:) carrying the same energy while having the
opposite direction of energy flux.

1.2. Canonical Ensemble. We study the canonical ensemble of
such free particle systems at finite temperature. We compute the mean
energy of the qp, its mean square fluctuation, and the quantum correlation
of the qp with itself along the lattice.

The equilibrium density matrix of such an ensemble is exp(&;H� )
where, as usual, ; is the inverse temperature in appropriate units. We need
to calculate the partition function per lattice site, Z�L,

Z
L

=
1
L

:
L

:=1

exp(&;E (:)) (13)

This can be expressed as

Z
L

=e&2;tI0(2;t) (14)

in the limit of L � �, where I0 is the 0th order modified Bessel function.
The expectation value of the energy is

(H� )=2t+(H� $) (15)
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where H$ is the typical tight binding hamiltonian and here the angle
brackets represent the thermal average:

H� $=H� &2t

=&t :
j

(c+
j cj+1+c+

j+1cj ) (16)

(H� $)=\1
L

(H� $e&;H� )+<\Z
L+ (17)

With a little calculation, we find

(H� $)=&2tI1(2;t)�I0(2;t) (18)

Similarly, we also obtain the energy fluctuation per site, as

(H� 2)&(H� ) 2=2t2+2t2 I2(2;t)
I0(2;t)

&4t2 I 2
1(2;t)

I 2
0(2;t)

(19)

where, in the above and in the remainder of the paper, In is the modified
Bessel function of order n.

Now we investigate the correlation function. We define

G1(n)=�:
j

� j*�j+n� (20)

as the qp�qp correlation function. Since �j+n is the wave function �j dis-
placed by n lattice sites, G1(n) provides a measure of the mean spread of
the qp along the lattice. We will investigate other correlations, such as the
atom�qp correlation function, later.

Now, from (11),

G1(n)=
�: (1�L) exp(&;E (:)) exp(2n?:i�L)

�: (1�L) exp(&;E (:))
(21)

Skipping a lengthy calculation, finally we find

G1(n)=
In(2;t)
I0(2;t)

(22)

in the limit of L � �.
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2. Path Integral Analogue

In general, for an arbitrary interacting system, there is no direct way
to compute the quantum trace. Lacking a quantum computer, we have to
find some equivalent classical system which we can sample by standard
means. For each physical observable we want to investigate, we need to
construct a corresponding ``classical'' operator in the path integral for-
malism. These transformed operators become the random functions which
are averaged in the Monte Carlo calculation.

2.1. Partition Function. To demonstrate the path integral re-for-
mulation, we start with the partition function. In the | j) representation the
partition function is

Z=Tr e&;H� =:
j1

( j1| e&;H� | j1) (23)

We split the operator into p factors,

e&;H� =[e&;H� �p] p=e&;H� �pe&;H� �p } } } e&;H� �p (24)

and insert the identity operators,

:
j:

| j:)( j: |=1 (25)

Making use of the Trotter formula, (13) we have

Z=:
j1

:
j2

} } } :
jp

( j1| e&;H� �p | j2)( j2 | e&;H� �p | j3) } } } ( jp | e&;H� �p | j1)

=:
j1

:
j2

} } } :
jp

`
p

:=1

( j: | e&;H� �p | j:+1) (26)

where

jp+1= j1 (27)

We calculate the matrix element in Eq. (26) to be

( j | e&;H� �p |k) =Ij&k(2;t�p) (28)

so finally we obtain the partition function as

Z=:
j1

:
j2

} } } :
jp

`
p

:=1

Ij:& j:+1
(2;t�p) (29)
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where the summation is over all j1 , j2 ,..., jp . We can identity the sequence
j=( j1 , j2 ,..., jp) with a p step closed random walk on the lattice which
starts at j1 and has steps with displacement

s:= j:+1& j: (30)

and the factor

`
p

:=1

I j:& j:+1
(2;t�p) (31)

as the probability (when properly normalized) assigned to each random
walk.

Notice that a sample walk j1 , j2 ,..., jp is required to satisfy the con-
straint jp+1= j1 or

:
p

:=1

s:=0 (32)

so the random walk is closed.
We can also interpret the form of Z from another point of view. We

define

8(j)=8( j1 , j2 ,..., jp)=&
1
;

:
p

:=1

ln Ij:& j:+1
(2;t�p) (33)

and

.( j)=&
1
;

ln Ij (2;t�p) (34)

Then

8( j1 ,..., jp)= :
p

:=1

.( j:& j:+1) (35)

and

`
p

:=1

I j:& j:+1
(2;t�p)=exp[&;8( j1 , j2 ,..., jp)] (36)
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We can then interpret the probability

`
p

:=1

I j:& j:+1
(2;t�p) (37)

as the ensemble probability of certain classical systems

exp[&;8( j1 , j2 ,..., jp)] (38)

This classical system takes the form of a closed ring polymer on the lattice
consisting of p particles with the interaction energy 8( j1 , j2 ,..., jp). Effec-
tively, each polymer element is only directly coupled to it's nearest
neighbors in the chain (not necessarily the nearest lattice site) through the
interaction . which depends both on ; and the number of lattice sites
separating each pair of polymer elements.

Our approach will be to construct random walks by generating
sequences of positive and negative integers s1 , s2 ,..., sp according to the
probability P(s1 , s2 ,..., sp). We will develop appropriate functions which,
when averaged over a large set of walks, converge to the thermal mean of
specific physical and statistical quantities, e.g., the energy and the correla-
tion function G1(n).

2.2. Energy. We also need to find a way to calculate the average
energy by the Monte Carlo method. We treat the energy in a similar manner
as the partition function. As usual,

H� =T� +V� (39)

where T� is kinetic energy operator and V� is potential energy operator. In
the free particle case,

H� =T� =2t&t :
j

(c+
j cj+1+c+

j+1cj ) (40)

V� =0 (41)

T� $=H� $=&t :
j

(c+
j cj+1+c+

j+1 cj ) (42)

The matrix element in the | j) representation is easily seen to be

( j1| T� $ |k)=&t($j1 , k&1+$ j1 , k+1) (43)

Then, taking the canonical average of T� ,

(T� $)=Tr[T� $e&;H� ]�Z (44)
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we find

Tr[T� $e&;H� ]

=:
j1

:
j2

} } } :
jp
{&

2t
p

:
p

:=1

Ij:& j:+1+1(2;t�p)

Ij:& j:+1
(2;t�p) = `

p

:=1

Ij:& j:+1
(2;t�p) (45)

We see from Eq. (45) that the average of a physical observable 3� has
the form

:
walks

3cl(walk_Probability(walk) (46)

where 3cl is a function defined on a walk and is the counterpart of the
quantum operator 3� in the classical system isomorphism. Each quantum
operator has a corresponding classical operator in the isomorphic ensemble
of polymer systems. Thus the quantum kinetic energy operator is

T� =2t&t :
j

(c+
j cj+1+c+

j+1 cj ) (47)

and its classical analogue is

{=2t&
2t
p

:
p

:=1

Ij:& j:+1+1(2;t�p)

Ij:& j:+1
(2;t�p)

(48)

2.3. Energy Fluctuation. We will treat the square of the energy
similarly in order to compute the energy fluctuation. First we calculate the
matrix element

( j1| T� $2 |k) =t2($j1 , k&2+2$j1 , k+$j1 , k+2) (49)

The calculation is similar to that of the energy and we obtain

Tr[T� 2e&;H� ]

=e&2;t :
j1

:
j2

} } } :
jp
{2t2+

2t2

p
:
p

:=1

Ij:& j:+1+2(2;t�p)

Ij:& j:+1
(2;t�p) = `

p

:=1

Ij:& j:+1
(2;t�p)

(50)

The classical isomorphism of T� 2 is therefore

{2=2t2+
2t2

p
:
p

:=1

Ij:& j:+1+2(2;t�p)

Ij:& j:+1
(2;t�p)

(51)
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2.4. Correlation Function. We are going to compute the cor-
relation function using the path integral formalism. From the definition (20),

G1(n)=:
j

�j*�j+n

In the occupation number representation, it takes the form

G� 1(n)=:
j

c+
j c j+n (52)

The matrix element we need is

( j1| G� 1 |k) =$j1 , k&n (53)

and the trace will be

Tr[G� 1 e&;H� ]=:
j1

:
j2

} } } :
jp
{ 1

p
:
p

:=1

Ij:& j:+1+n(2;t�p)

Ij:& j:+1
(2;t�p) = `

p

:=1

Ij:& j:+1
(2;t�p)

(54)

It follows that the classical analogue of qp�qp correlation function
operator is

11=
1
p

:
p

:=1

Ij:& j:+1+n(2;t�p)

Ij:& j:+1
(2;t�p)

(55)

2.5. Generation of the Random Walks. Here we develop a
Levy method for sampling the walks. Suppose P(s) is the probability of
sequence (s1 , s2 ,..., sp). Then

P(s1 , s2 ,..., sp)=C `
p

:=1

Isj
(2;t�p) 2 \:

:

s:+ (56)

where

2(x)={1
0

x=0
x{0

(57)

and C is a normalization factor. The presence of the function 2 arises from
the constraint (32) which requires the random walk to be closed. Using the
Fourier representation of 2(x)

2(x)=
1

2? |
?

&?
eikx dx (58)
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and the identity(8)

:
�

s=&�

Is(x) cos ks#ex cos k (59)

we find

C=1�I0(2;t) (60)

We'd like to generate the sequence of numbers j1 , j2 ,..., jp one after
another instead of getting them at once as a group. We ask, given the first
& integers in the sequence s1 , s2 ,..., s& , what is the conditional probability,
P(s&+1 | s1 , s2 ,..., s&), of getting s&+1 next?

As usual, the conditional probability can be expressed as

P(s&+1 | s1 , s2 ,..., s&)=P(s1 , s2 ,..., s&+1)�P(s1 , s2 ,..., s&) (61)

where

P(s1 , s2 ,..., s&)=C :
s&+1

:
s&+2

} } } :
sp
_ `

&

:=1

Is:
(2;t�p)&

__ `
p

:=&+1

Is:
(2;t�p)& 2 \ :

&

:=1

s:+ :
p

:=&+1

s:+
is the joint probability for s1 , s2 ,..., s& and again 2 insures the closure of
each random walk.

Let

t&= :
&

:=1

s: (62)

be the displacement after & steps. Then as we did earlier by employing the
Fourier representation of 2, we have

:
s&+1

} } } :
sp
_ `

p

:=&+1

Is:
(2;t�p)& 2 \t&+ :

p

:=&+1

s:+
=

1
2? |

?

&?
eikt& exp \ p&&

p
2;t cos k+ dk

=It& \ p&&
p

2;t+ (63)
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Finally we obtain for the conditional probability,

P(s&+1 | s1 ,..., s&)=
It&+1

((( p&&)�p) 2;t) Is&+1
(2;t�p)

It&
((( p&&)�p) 2;t)

(64)

3. Results from the Monte Carlo Calculation

We generated random walks step by step by partitioning the unit
interval by the sequence of sub-intervals P(0 | s1 ,..., s&), P(1 | s1 ,..., s&),
P(&1 | s1 ,..., s&), P(2 | s1 ,..., s&), P(&2 | s1 ,..., s&),... . We select a random
number from the uniform distribution and determine which interval of the
partition it occupies. Then the displacement of the random walk in this
step is determined. We add up the contributions for the classical analogue
of the operator for the complete random walk and finally we take the mean
over all walks to get the average.

Using the computer, we calculated the energy and correlation func-
tions over a variety of temperatures and they turned out to agree very well
with the analytical results. Figure 1 shows the energy over a range of

Fig. 1. Energy vs. Inverse temperature, ;, for a free particle moving on the lattice. The
continuous curve is a plot of the exact theoretical results. The crosses are the results of Monte
Carlo simulations. The agreement is outstanding. Error bars are too small to be seen on this
scale.
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Fig. 2. Self-correlation function, G1(n), of the free quantum particle on the lattice for ;=10.
As above, the curve is a plot of the exact theoretical results while the crosses represent the
Monte Carlo simulations. Note the excellent agreement except near the shoulders, where the
number of significant events becomes small.

temperatures. The solid line is the analytical result; and the crossed points
are Monte Carlo results. In Fig. 2 we plot the qp�qp correlations vs separa-
tion n for ;=10. Again, the agreement of the Monte Carlo simulations
with the analytic results is excellent. Calculations over a wide range of tem-
perature (not shown) confirm our intuition that when the temperature is
lowered the correlation just spreads out. It's important to note that, for a
free particle, the discrete path integral is exact for finite Trotter number p.
In practice, choosing values between 10 and 100, we obtained excellent
convergence (see Fig. 1) by sampling 105 independent walks. Typical dif-
ferences from the exact result were in the fourth decimal place for the
energy.

IV. PRESENCE OF ATOMS ON THE LATTICE

1. Fixed Configurations of Atoms

Now we deal with the presence of the interaction between the qp and
the atoms. This is easiest when the atoms are rigidly fixed on the lattice;
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then the qp just sees the atoms as the source of an external potential field.
This corresponds to the case where the influence of the lattice on the qp is
one way. There is no feedback, and the lattice atoms are not aware of the
presence of the qp. As before, we express the quantum operators in the
path integral form. This is very similar to the case of the free particle except
that the potential vj is included as the external field.

We will consider two very different qp environments, one in which the
atoms are distributed periodically on the lattice, and the other representing
complete quenched disorder. These are both important. The former
provides a test of the path integral formalism for dealing with propagating
qp states, while the latter should induce localization via the Anderson
mechanism. In each case the lattice is half filled on the average, and we
choose ==10.0, i.e., a strong interaction strength, for the qp�atom interac-
tion strength.

1.1. Metropolis Sampling. The probability of a specific walk on
the lattice is now proportional to

exp(&;V�p) _ `
p

:=1

Is:
(2;t�p)& 2 \ :

p

:=1

s:+
Thus all averages must now include the Gibb's factor exp(&;V�p) as well
as the product of modified Bessel functions. In contrast with the free
particle, in the general interacting system the presence of this factor in the
distribution function prevents us from directly sampling the probability dis-
tribution for a random walk. To deal with this complication we employ
Metropolis sampling.(23) That is we still use the free particle conditional
probability, expressed in Eq. (71), to generate a walk, but we then employ
rejection to produce a sequence of walks which satisfies the correct dis-
tribution. Let q represent the acceptance factor,

q=
> p

:=1 e&;V$j:

> p
:=1 e&;Vj:

=
exp(&(;�p) � p

:=1 V$j:)

exp(&(;�p) � p
:=1 V j:

)
(65)

where V$ is the potential energy for the new walk, and V that of the
previous walk. Then according to the Metropolis criteria, if q>1 we
automatically accept the new walk, while if q<1 we only accept it with
probability q. This is determined by drawing a random number on the unit
interval. If it is less than q, we accept the walk. If it is greater than q, we
reject it and we repeat the data for the previous walk.

For the interacting system we applied the Metropolis method to com-
pleted walks. We increased both the Trotter number, p, and the number of
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Fig. 3. Potential energy of the qp vs. ; for an exactly periodic lattice in which atoms occupy
alternate sites. In our dimensionless units, the qp�atom interaction strength, ==10.

independent samples until changes in mean values ceased to occur. We
found excellent convergence with p>50 and a total of 105 walks. To con-
fine the system we applied periodic boundary conditions to both the walks
and the lattice atoms with a total of L sites. The extension of the polymer
was seldom greater than 10 lattice sites. By choosing L to be 300 sites in
length, we avoided any noticeable finite size effects.

1.2. Form of the Operators. The expression for both kinetic
energy operator and the qp�qp correlation function G1 in the classical
isomorphism remains the same in the interacting system as that for the free
particle, while that for the potential energy is simply given by V(n)=
� p

:=1 =nj:
. However, in the presence of atoms, we can also define and study

the atom-quantum-particle correlation function,

G2(n)=�:
j

nj |�j+n| 2� (66)

In occupation number representation

G� 2(n)=:
j

njc+
j+n cj+n (67)

Note that we do not include e&;V in the definition of the operator.
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Fig. 4. Self-correlation function, G1(n), of the qp interacting with the periodic lattice for
;===10. Compare this with Fig. 2 and note the shorter range and steep shoulders.

This carries information concerning the range of lattice sites over which the
qp wave functions are influenced by an atom, and vice-versa. It is apparent
that, on an infinite lattice, G2(n) vanishes for large n unless the distribution
of atoms exhibits long range order. The calculation G2(n) is parallel to the
above: We find the path integral form of this correlation function is

G2(n)=(1�Z) :
j1

:
j2

} } } :
jp
{ 1

p
:
p

:=1

nj:&n =
_ `

p

:=1

e&;Vj:
�pIj:& j:+1

(2;t�p) 2 \ :
p

:=1

s: + (68)

Thus 12(n), the classically isomorphic operator to G2(n), is simply

12(n)=
1
p

:
p

:=1

nj:&n (69)
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1.3. Monte Carlo Calculation for Periodic Atoms. The
atoms were distributed on alternate lattice sites. We calculated the kinetic
and potential energy as a function of temperature or ;. We computed the
qp�qp correlation functions, and also obtained the atom-qp correlations.
The dependence of the kinetic energy on ; is nearly the same as in the free
particle case (see Fig. 1). We can see that at high temperature (small ;), the
behavior is nearly the same as the free particle case. That is to say, the
potential energy is around 5.0. Since the interaction parameter is set to be
10.0, it means that at high temperature the qp just moves freely on the
lattice and it meets an atom with a chance of one half. As shown in Fig. 3,
the potential energy gradually drops with increasing ;, indicating the
development of correlation between the qp and lattice atoms, and the
preference of the qp to sit on unoccupied sites. As shown in Fig. 4, this
behavior is mirrored by the qp�qp correlation function, G1(n), which drops
much more steeply than that for the free particle (compare with Fig. 2,
both computed with ;=10). Figure 5 illustrates the atom-qp correlation,
also at ;=10. We observe the undulating pattern arising from the periodic
layout of the atoms demonstrating the long (nearly infinite) range of
correlation between the qp and the lattice atoms.

Fig. 5. The qp�atom correlation function, G2(n), for the periodic lattice with ;===10.
Note the evidence of propagating modes from the long range order.
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2. Grand Ensemble of Disordered Quenched Lattices

Here we consider a grand canonical ensemble of random systems with
varying numbers of atoms and a single qp. The number of atoms is not
fixed. As above, we consider the case where the lattice is half filled on the
average.

In the quenched case, we distribute the atoms independently of the qp.
First we lay down the configuration of atoms by simply occupying each
lattice site with an atom at random with probability 0.5. Then, for each
configuration of atoms n=(n1 , n2 ,..., nL), where nj=0, 1 is the occupation
number of site j, we treat n as fixed when considering the qp, i.e., we allow
the qp to thermalize in the field induced by the fixed atoms. Then the
average of a quantum operator 3� over walks j=( j1 ,..., jp) depends on n,
and we denote it by (3� n) ,

(3� n) =
�j1 ,..., jp

e&;Vj:
�p3cl(n, j) > p

:=1 Ij:& j:+1
(2;t�p)

�j1 ,..., jp
e&;Vj:

�p > p
:=1 Ij:& j:+1

(2;t�p)
(70)

Fig. 6. The qp�atom correlation function, G2(n), for the quenched, disordered, lattice with
;===10. Note the lack of long range order and the evidence of a small quantum well,
suggesting that weak localization occurs in the neighborhood of density fluctuations.
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where 3cl , is the classical counterpart of the quantum operator 3� . By
averaging over n we obtain the final ensemble average of 3� as

(3� ) = :
n1 ,..., nL

>L
:=1 e ;+n:

(1+exp(;+))L (3� n) (71)

With regard to the kinetic and potential energy, as well as the qp�qp
correlation function, the results of the Monte Carlo calculation for the
quenched ensemble are similar to those of the periodic lattice with the same
mean density. In Fig. 6 we plot the atom-qp correlations. This shows
strongly the effect of Anderson localization, for around zero separation the
correlation drops almost to zero, indicating that it is extremely unlikely to
find the qp at an occupied lattice site, but at large displacements
approaches 0.5 as it must.

3. Annealed Lattices

When the lattice is annealed, the qp can also influence the local dis-
tribution of atoms on the lattice and the influence works both ways. We

Fig. 7. Kinetic energy vs. ; for the fully annealed qp�atom system. For comparison we also
present the free particle calculation (smooth curve). Note that for sufficiently low temperature
(;>0.5) the kinetic energy of the qp is greater than that of the free particle. This suggests that
the qp is frequently trapped in a quantum well which it helps to create.
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Fig. 8. Potential energy vs ; for the fully annealed system. Consistent with Fig. 7 in the
vicinity of ;r0.5 the potential energy drops rapidly from 5.0, the infinite temperature value,
to nearly zero, suggesting that the qp is now trapped in a nearly atom free domain.

thus consider the qp and the atoms together as one system. The atoms are
no longer simply a source for the external potential experienced by the qp.
The complete density matrix is now

exp \;+ :
j

nj+ Tr exp(&;H� )

and the grand partition function is

5= :
[nj ]

e ;+ �j nj Tr e&;H� (72)

where, as usual, + is the chemical potential.
When expressed in path integral form, (72) takes the form

5= :
n1 , n2 ,..., nL

e ;+N :
j1 , j2 ,..., jp

`
p

:=1

e&;Vj: Ij:+1& j:
(2;t�p) 2 \ :

p

:=1

s:+ (73)
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To determine the grand partition function (and all other functions) by
Monte Carlo sampling, we sample the atoms n1 , n2 ,..., nL simultaneously
with the random walk for the qp, j1 , j2 ,..., jp .

As above, we denote n=(n1 , n2 ,..., nL). Thus the pair of lattice vectors
n, j represent a microstate of the (classical) system. To proceed, we need to
be able to sample the joint probability P(n, j). In the previous quenched
case we sampled the conditional probability P(j | n), that is the probability
of obtaining the random walk j after the atoms are previously laid down.
To sample the joint probability P(n, j) we also use the standard form of the
Metropolis method. As in the quenched disordered system considered
earlier, we lay down the lattice atoms independently on each site with prob-
ability 0.5, and use the free particle distribution to generate the walk j.
We then construct the acceptance ratio q as above and accept or reject the
n, j pair in the usual manner.

Figures 7 through 10 illustrate the results of Monte Carlo calculations.
Figure 7 shows the kinetic energy vs ;, or inverse temperature. The solid
line is the comparison with the free particle kinetic energy. The starred
points are Monte Carlo calculations with the interaction parameter set
equal to 10. We observe that the kinetic energy is higher when there is

Fig. 9. Self-correlation function, G1(n), of the qp interacting with the fully annealed lattice
for ;===10. Compare this with Figs. 2 and 4. Note the finite range, suggesting an average
well width of about 10 lattice sites.
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strong interaction between the qp and the atoms. Figure 8 shows the
potential energy vs ;. We observe that as the temperature drops, the poten-
tial energy decreases much more rapidly than in the quenched system,
dropping nearly to zero at finite temperature. Figure 9 shows that the
qp�qp correlation function is narrowed compared with the free particle
case. Figure 10 shows the atom-qp correlation. We see that it goes to zero
sharply at zero separation. Figures 7, 8 and 10 strongly indicate the effect
of self trapping. When the lattice is annealed, the qp is able to influence its
environment by enlarging the potential well created by a group of adjacent
lattice sites which is free of atoms when the temperature is low and the
interaction is strong. Consequences are an enhanced kinetic energy (from
the uncertainty principle), a reduced potential energy (since the qp is
primarily occupying empty sites) and a region of strong qp�atom posi-
tional anti-correlation. Similar behavior has been observed experimentally
with positrons thermalized in helium near the critical point.(2, 4)

Fig. 10. The qp�atom correlation function, G2(n), for the fully annealed system with
;===10. Note the lack of long range order and the evidence of self-trapping in-a deep quan-
tum well with a width of about 10 lattice spacings, consistent with Fig. 9. Also note that the
shoulders rise above 0.5, suggesting greater than average density on either side of the well due
to the addition of atoms excluded from the well. This can also be seen in Fig. 6.
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V. COMPARISON WITH MEAN FIELD THEORY

We also compared our results from Monte Carlo calculation with the
results from the Mean Field Theory (MFT), which was generally used in
previous work.(7, 12)

In MFT, we consider that the state vector 99 acts as an external field
for the atoms n� . We minimize the free energy under the constraint
(99 | 99 ) =1 to obtain a difference equation for the components of the
wave function:

9j+1=&9j&1+\\ =
1+exp[;(=9 2

j &+)]+&E$+ 9j (74)

Equation (89) was solved iteratively for the ground state by a shooting
method which required a reflection symmetric, positive, monotonically
decreasing solution which vanished at infinity.

MFT is a rough approximation, but at very low temperature we
expect that the qp tends to occupy a single quantum state and, therefore,
that MFT should yield results close to the numerically accurate Monte

Table 1. Average Kinetic Energy over a Range of Temperatures for a Particle
in Lattice Gas. Monte Carlo Compared with MFT

; Monte Carlo MFT

0.1 1.796401 0.16129
0.2 1.645506 0.92217
0.3 1.530350 1.1105
0.4 1.429636 1.1632
0.5 1.339505 1.1731
0.6 1.238408 1.1657
0.7 1.155905 1.1495
0.8 1.082056 1.1268
0.9 0.998696 1.0968
1.0 0.928160 1.0540
2.0 0.522176 0.4311
3.0 0.367641 0.4249
4.0 0.291020 0.4179
5.0 0.246333 0.2213
6.0 0.211787 0.2170
7.0 0.183894 0.2158
8.0 0.166528 0.2150
9.0 0.152720 0.2142

10.0 0.138285 0.2130
100.0 0.012466 0.03541
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Table 2. Average Potential Energy over a Range of Temperatures for a
Particle in Lattice Gas. Monte Carlo Compared with MFT

; Monte Carlo MFT

0.1 2.714219 4.40371
0.2 1.217209 2.05930
0.3 0.537491 1.05604
0.4 0.254720 0.65375
0.5 0.148904 0.49638
0.6 0.111876 0.43731
0.7 0.100211 0.41855
0.8 0.093194 0.41673
0.9 0.087584 0.42324
1.0 0.086344 0.43819
2.0 0.057635 0.09877
3.0 0.039945 0.07358
4.0 0.031121 0.07411
5.0 0.025610 0.04573
6.0 0.022528 0.02996
7.0 0.019232 0.02573
8.0 0.016032 0.02454
9.0 0.014008 0.02470

10.0 0.013047 0.02446
100.0 0.0016421 0.0015555

Carlo calculations. With the exception of a weak local maximum in the
MFT results at an inverse temperature of about 0.5 which we are unable
to explain at this time, in general both MFT and PIMC show a steady
increase in kinetic energy with temperature. When ;=100 (low tempera-
ture) and ==10 (strong interaction), we find from MFT that, in our
dimensionless units, the kinetic energy of the qp is KE=0.03541 and the
potential energy PE=0.0016421. However, Monte Carlo yields KE=
0.012466, PE=0.0015555 for the same temperature and mean lattice den-
sity. See Tables 1 and 2 for a further comparison of Monte Carlo results
with MFT.

VI. SUMMARY AND CONCLUSIONS

We started with the tight binding Hamiltonian to study a light quan-
tum particle interacting with a lattice gas of atoms. In the case of the free
particle we derived the analytically exact solution of eigen energies and
wave functions for the system. We investigated system properties in the
canonical ensemble such as the partition function, energy, energy fluctua-
tion and self-correlation of the free qp. Using the path integral formalism,
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we established a connection between the quantum trace and the weighted
sum of variable step size random walks on the lattice. The isomorphism
was used to establish a method for carrying out Monte Carlo calculations
of the thermal average of physical observables. The Monte Carlo simula-
tion results for the free particle were very well corroborated by the analyti-
cal results. Although in the presence of interaction with atoms analytical
results cannot be obtained, it's clear that the Monte Carlo method can be
trusted.

In the presence of interaction of the qp with the lattice atoms we
investigated the kinetic and potential energy and the qp-atom correlation
function in the grand canonical ensemble. We considered three distinct
cases, two of them characterized by a quenched lattice gas in which the
atoms were distributed either periodically or completely disordered, and
the third in which the qp-atom system was fully annealed. Localization is
demonstrated through the potential energy and qp-atom correlation.
Studies of the quenched disordered system exhibited the effects of weak
(Anderson) localization whereas the fully annealed system exhibited strong
localization due to self-trapping.

We also compared our results with mean field theory, which has been
widely used as an approximation in the study of thermalized electrons,
positrons and positronium.(1, 2, 7, 12) We found that at low temperature
MFT is a good predictor for potential energy but just gives order of
magnitude agreement for kinetic energy. As far as we know, this is the first
direct comparison of MFT with numerically accurate Monte Carlo predic-
tions.

It is clear that this simple model reproduces the central features of the
experimentally observed behavior of light particles in fluids. Moreover,
computations can' be carried out much more efficiently than in spatially
continuous systems, so it is possible to investigate a much greater range of
system parameters with numerical accuracy. In future work we plan to
study the case where there are additional interactions between the lattice
atoms. We are also going to generalize the lattice from one to two dimen-
sions. In the one dimensional model, no phase transition can occur. In two
dimensions, the isomorphism between the interacting lattice gas and the
Ising model(25) guarantees a phase transition, and a critical point, in the
former. In continuous systems the critical point seems to play an important
role in self trapping.(1, 4�7, 12) As mentioned above, in earlier work we have
shown that the influence of fluctuations in the critical region is on the same
order as the mean field.(18) However, the critical region is very difficult to
investigate theoretically and numerically in continuous systems because the
convergence is slow. We plan to thoroughly investigate the behavior of a
qp in a 2-dimensional interacting lattice gas in the critical region.
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